



# REPÚBLICA FEDERATIVA DO BRASIL MINISTÉRIO DO DESENVOLVIMENTO, INDÚSTRIA, COMÉRCIO E SERVIÇOS INSTITUTO NACIONAL DA PROPRIEDADE INDUSTRIAL

#### CARTA PATENTE Nº BR 102017007569-9

O INSTITUTO NACIONAL DA PROPRIEDADE INDUSTRIAL concede a presente PATENTE DE INVENÇÃO, que outorga ao seu titular a propriedade da invenção caracterizada neste título, em todo o território nacional, garantindo os direitos dela decorrentes, previstos na legislação em vigor.

(21) Número do Depósito: BR 102017007569-9

(22) Data do Depósito: 12/04/2017

(43) Data da Publicação Nacional: 30/10/2018

**(51) Classificação Internacional:** C04B 35/495; C04B 35/465; C04B 35/50; C04B 35/626; C04B 35/515; H01G 4/12.

**(52)** Classificação CPC: C04B 35/495; C04B 35/465; C04B 35/50; C04B 35/626; C04B 35/5156; H01G 4/12; H01G 4/1209; H01G 4/1227.

**(54) Título:** UM NOVO COMPÓSITO DE NIOBATO DE ÍTRIO (YNBO4) E TITANATO DE CÁLCIO (CATIO3) COM COEFICIENTE DE TEMPERATURA DE FREQUÊNCIA RESSONANTE (TF) PRÓXIMO DE ZERO NA REGIÃO DE MICRO-ONDAS PARA APLICAÇÕES EM MICRO-ONDAS

(73) Titular: UNIVERSIDADE FEDERAL DO CEARÁ, Instituição de Ensino e Pesquisa. CGC/CPF: 07272636000131. Endereço: AV DA UNIVERSIDADE, 2853 BENFICA, CE, BRASIL(BR), 60020-180, Brasileira

(72) Inventor: ANTONIO SERGIO BEZERRA SOMBRA; FELIPE FELIX DO CARMO; JOÃO PAULO COSTA DO NASCIMENTO; MARCELLO XAVIER FAÇANHA; SEBASTIÃO JUNIOR TEIXEIRA VASCONCELOS.

Prazo de Validade: 20 (vinte) anos contados a partir de 12/04/2017, observadas as condições legais

Expedida em: 25/07/2023

Assinado digitalmente por:
Alexandre Dantas Rodrigues

Diretor de Patentes, Programas de Computador e Topografías de Circuitos Integrados

"Um novo compósito de niobato de ítrio  $(YNbO_4)$  e titanato de cálcio  $(CaTiO_3)$  com coeficiente de temperatura da frequência ressonante  $(\tau_f)$  próximo de zero na região de micro-ondas para aplicações em micro-ondas"

#### Campo da invenção

[001]A presente invenção está relacionada ao desenvolvimento de um novo material cerâmico para o melhoramento da eficiência em dispositivos que operem na região de micro-ondas.

[002]Nesta proposta de invenção, foi desenvolvido um novo sistema cerâmico para obter um material cujas propriedades dielétricas na região de micro-ondas não se altere de forma significativa com o aumento de temperatura ao qual este sistema cerâmico seja submetido. Para este novo sistema cerâmico foi proposto a fabricação de um material compósito formado a partir de dois óxidos cerâmicos:  $YNbO_4$  e o  $CaTiO_3$ . O parâmetro para avaliar a estabilidade dielétrica deste compósito foi o coeficiente de frequência ressonante  $(\tau_f)$ , que para demonstrar que o material em estudo apresenta excelente estabilidade térmica deve estar com um valor próximo de zero.

#### Antecedentes da Invenção

[003]0 YNbO<sub>4</sub> pertence ao grupo conhecido como ortoniobatos, com estrutura genérica  $ANbO_4$ . O  $YNbO_4$  sofre transição ferroelástica reversível com a mudança de temperatura, onde em temperatura ambiente apresenta estrutura do tipo  $\beta$ -fergusonita com sistema cristalino

monoclínico (C 2/ c) e grupo pontual C2h, onde o cátion Y³+ exibe coordenação entre 6 e 8 com o oxigênio e o cátion Nb+5 apresenta coordenação 4+2 com o oxigênio. Em temperaturas mais elevadas, na faixa de 800 °C, esse composto sofre transição de fase passando a apresentar estrutura do tipo scheelite com sistema cristalino tetragonal (1 4/ Ia) e grupo pontual D4h, onde o cátion Nb+5 se apresenta coordenado ao oxigênio em um sistema tetraédrico distorcido (Jing X P, Gibbons C, Nicholas D, Silver J, Vecht A, Frampton C S. Blue luminescence in yttrium and gadolinium niobates caused by bismuth. The importance of non-bonding ns2 valence orbital electrons. J. Mater. Chem., 1999, 9(11): 2913).

[004]A matriz cerâmica YNbO<sub>4</sub> possui larga aplicação como fósforo no campo dos materiais luminescentes por meio da substituição do cátion Y<sup>3+</sup> por íons lantanídeos trivalentes (G. Blasse. Luminescence processes in niobates with fergusonite structure. *Journal of Luminescence* 14, 231-233 1976) mas são escassos os registros na literatura no que se refere a aplicação dessa matriz cerâmica em dispositivos que operem na região de micro-ondas.

#### Sumário da Invenção

[005]A matriz cerâmica  $YNbO_4$  foi preparada pelo método de reação em estado sólido, misturando em proporções estequiométricas o óxido de ítrio  $(Y_2O_3)$  e o pentóxido de nióbio  $(Nb_2O_5)$ . Os reagentes foram levados para moagem por um período de 4 horas em um moinho planetário, em reatores feitos de poliacetal e esferas de zircônia com 0,1 mm de diâmetro e posteriormente calcinados em um forno mufla na temperatura de 1200°C. A representação química da reação mencionada pode ser apresentada da seguinte forma:

## $Y_2O_3 + Nb_2O_5 \xrightarrow{\Delta} 2 YNbO_4$

[006]A síntese da fase cristalina de YNbO4 foi caracterizada pela técnica difração de raio-x e a confirmação da fase cerâmica YNbO4 foi através do refinamento dos difratogramas experimentais pelo método Rietveld. Os dados do refinamento Rietveld para a síntese da matriz YNbO4 foram de Rwp = 4,9,  $\chi^2$  = 2,33 e o  $R_{Bragg}$ = 1,9 onde foi utilizado apenas uma fase cristalina e os parâmetros obtidos estão dentro dos limites mostrando que o refinamento realizado apresenta boa confiabilidade e confirma a obtenção da fase cerâmica YNbO4. A Figura 1 mostra o resultado do refinamento para a síntese do YNbO4, em que é possível observar o perfil de difração experimental da fase YNbO4, do obtido via refinamento Rietveld e o resíduo gerado pela diferença entre o experimental e o calculado.

[007]O estudo do  $\tau_f$  de uma cerâmica feita a partir do YNbO<sub>4</sub> foi realizado e os resultados obtidos mostraram que o  $\tau_f$  medido foi de -54 ppm.°C<sup>-1</sup> o que impossibilita sua aplicação em dispositivos de micro-ondas mais refinados como antenas e radares. A incorporação de um componente que se contraponha as características do YNbO<sub>4</sub> se fez necessário.

[008]O titanato de cálcio é um material cerâmico bastante mencionado na literatura, amplamente estudado e aplicado no setor de eletroeletrônico, as características dielétricas, na região de micro-ondas, de cerâmicas obtidas através do CaTiO3 também são bastante conhecidas e estas, são tidas como de baixa perda dielétrica, alta permissividade dielétrica e um  $\tau_f$  positivo com valor de 850 ppm.°C-1 (SEBASTIAN, M. T. Dielectric Materials for Wireless Communication. Londres: Elsevier Ltd., 2008.), propriedades que são opostas ao do YNbO4.

[009]A síntese e caracterização dos compósitos de  $YNbO_4$ -CaTiO\_3 foram realizadas para se observar as características dielétricas deste sistema cerâmico. Assim foram realizadas adições de titanato de cálcio nas proporções em massa de 5%, 10% e 15%, cujos resultados do  $\tau_f$  medidos podem ser observados na figura 3 e na tabela 1.

[010] A análise dielétrica na região de micro-ondas foi efetuada através da metodologia de Hakki-Coleman, modelo mostrado na figura 2, o qual possibilita analisar o modo  $TE_{011}$  de um ressoador cilíndrico. Através do gráfico da Figura 4 e da tabela 1, pode-se observar um leve decréscimo da permissividade dielétrica de 15,48 a para 14,69 quando adicionado 5% em massa de titanato de cálcio e posteriormente ocorre um aumento da permissividade relativa com as adições de 10% e 15% e uma visível estabilidade da perda dielétrica do compósito na ordem de  $10^{-3}$ .

[011]As medidas do coeficiente de temperatura da frequência ressonante de YNbO4 e dos compósitos com CaTiO3 foram realizadas segundo a metodologia proposta por Silva-Fernandes-Sombra ou método SFS (M.A.S. Silva, T.S.M. Fernandes and A.S.B. Sombra, "An alternative method for the measurement of the microwave temperature coefficient of resonant frequency ( $\tau f$ )," J. Appl. Phys., vol. 112, no. 7, p. 074106, 2012). Os valores de  $\tau_f$  obtidos são mostrados no gráfico da Figura 3 e Tabela 1, podendo ser observado que o a matriz YNbO4 apresenta um valor de  $\tau_f$  de -54 ppm°C-1, e a adição do CaTiO3 no compósito provoca um deslocamento dos valores de  $\tau_f$  para valores positivos devido as características dielétricas desse material.

Breve descrição das figuras e tabelas

[012]Segue uma breve descrição das figuras e tabelas detalhando a metodologia e técnicas empregadas na análise dos compósitos cerâmicos  $\rm YNbO_4-CaTiO_3$  bem como os resultados dessas análises.

[013]A **Figura 1** apresenta o resultado de difração de raios-x, onde neste difratograma apresentam-se os picos de difração característicos do YNbO<sub>4</sub>, picos de difração extras não foram identificados demonstrando que não há nenhuma fase extra quer seja de reagentes ou fase espúria. O padrão cristalográfico utilizado para identificação como modelo no refinamento de Rietveld foi o ICSD 20335.

[014]A **Figura 2** mostra um esquema experimental da medição do coeficiente de temperatura da frequência de ressonância, onde o arranjo experimental utilizado é de antena ressoadora dielétrica (ARD) cilíndrica, alimentada lateralmente por uma sonda (E) e cabo coaxial (F). O controle de temperatura foi realizado com um termopar (C), medido em um forno cerâmico fechado com cerâmica refratária (A), alimentado com resistências elétricas (B) acoplado em cima da ARD e do plano de terra (D). O modo  $\rm HE_{11\delta}$  foi utilizado para a medição do  $\rm T_f$ .

[015]A **Figura 3** mostra a variação do  $\tau_f$  em função da porcentagem em massa de titanato de cálcio no compósito. É possível observar que, com o aumento da massa de titanato de cálcio no compósito os valores de  $\tau_f$  passam a assumir valores mais positivos, onde na porcentagem de 5% de CaTiO<sub>3</sub> na composição do compósito, o valor de  $\tau_f$  é 0,64 ppm.°C<sup>-1</sup>, valor esse muito próximo ao zero.

[016]A **Figura 4** mostra a variação da permissividade em função das concentrações de TiO<sub>2</sub>, onde observou-se uma leve queda para adição de 5% de titanato de cálcio e posteriormente um aumento acentuado dos valores de permissividade para as adições de 10% e 15% em massa do

titanato de cálcio, fenômeno associado a um aumento na densidade relativa dos compósitos da série.

[017]A **Tabela 1** mostra os valores dos parâmetros dielétricos em micro-ondas dos compósitos utilizados: permissividade, tangente de perda dielétrica e  $\tau_f$ . Percebese com o aumento da adição de CaTiO<sub>3</sub> na formação do compósito com a fase YNbO<sub>4</sub>, ocorre um aumento da permissividade e uma diminuição e posterior aumento na estabilidade na ordem de grandeza das perdas dielétricas, ocasionada pelas propriedades dielétricas do titanato de cálcio (CaTiO<sub>3</sub>).

### Descrição das concretizações preferidas da invenção

[018]Para a validação do  $\tau_f$  do material foram feitas várias medidas dielétricas dos compósitos YNbO4-CaTiO3. A adição do CaTiO3 ao YNbO4 conferiu uma estabilidade térmica características interessantes ao compósito formado, principalmente em relação a tangente de perda dielétrica e permissividade, além de mostrar um tf muito próximo de zero. Observou-se um aumento da permissividade bem como a estabilidade da perda dielétrica dos compósitos, assim possibilitando através destas novas propriedade pode-se verificar muitas aplicações em circuitos de micro-ondas. Os compósitos foram fabricados com a adição em massa do titanato de cálcio em porcentagens de 5%, 10% e 15% com YNbO4. A mistura foi realizada em moldes metálicos de diâmetro de 15 mm sob pressão constante de 1700 kgf/cm² em uma prensa uniaxial por um período de 5 minutos. Após este processo os cilindros obtidos foram sinterizados sob uma temperatura de 1300°C por 360 minutos. Para análise do  $\tau_{\rm f}$  os compósitos foram colocados sob temperatura constantes por um período de uma hora, tempo necessário para garantir que houvesse maior homogeneidade de temperatura da DRA com a temperatura que

foi submetida. Após este período, a frequência do modo  ${\rm HE}_{11\delta}$  foi medida e calculado o  $\tau_{\rm f}.$  As medidas dielétricas em microondas e do coeficiente de temperatura são mostradas na tabela 1, e visualizada mais detalhes na figura 3.

#### Reivindicações

- 1) Desenvolvimento de um compósito caracterizado pela fergusonita monoclínica YNbO<sub>4</sub> (YNO) e pela perovskita titanato de cálcio (CaTiO<sub>3</sub>), nas proporções de 05%, 10% e 15% em proporções mássicas (isto é m/m) cujo:
- I Síntese do niobato de ítrio  $(YNbO_4)$  obtida pela mistura do óxido de nióbio  $(Nb_2O_5)$  e óxido de ítrio  $(Y_2O_3)$ , com moagem de 4 horas dos óxidos e posterior calcinação a 1200°C durante 4 horas;
- II Formação da cerâmica pela prensagem por 5 minutos usando uma prensa uniaxial em que foi feita a aplicação de uma pressão de 1700 kgf/cm² e posterior sinterização dos compósitos YNbO<sub>4</sub> e CaTiO<sub>3</sub> a 1300°C durante 6 horas;
- III Cerâmica ressoadora dielétrica, onde a concentração mássica de 05% de CaTiO $_3$  apresenta um coeficiente de temperatura de ressonância muito próximo de zero ( $\tau_f = 0,64$  ppm°C $^{-1}$ ).

Figura 1

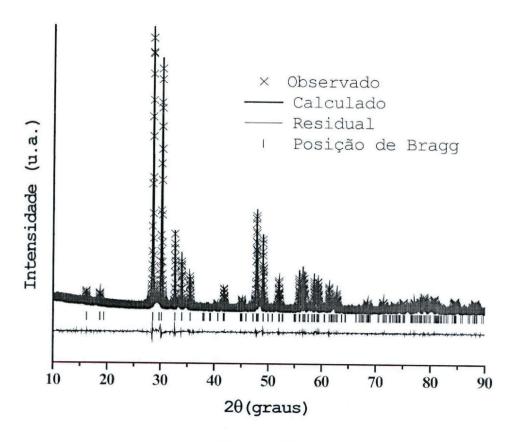



Figura 2

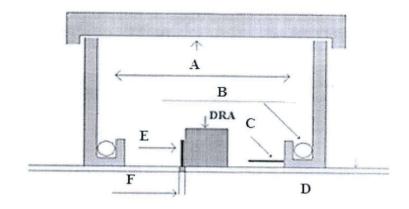



Tabela 1

| Compósito                                 | ε'    | tg δ (10 <sup>-3</sup> ) | $(\tau_f)$ (ppm/°C) |
|-------------------------------------------|-------|--------------------------|---------------------|
| YNbO <sub>4</sub>                         | 15,48 | 0,71                     | -54,03              |
| YNbO <sub>4</sub> + 5%CaTiO <sub>3</sub>  | 14,69 | 2,49                     | 0,64                |
| YNbO <sub>4</sub> + 10%CaTiO <sub>3</sub> | 19,89 | 2,20                     | 47,53               |
| YNbO <sub>4</sub> + 15%CaTiO <sub>3</sub> | 26,69 | 2,02                     | 81,64               |



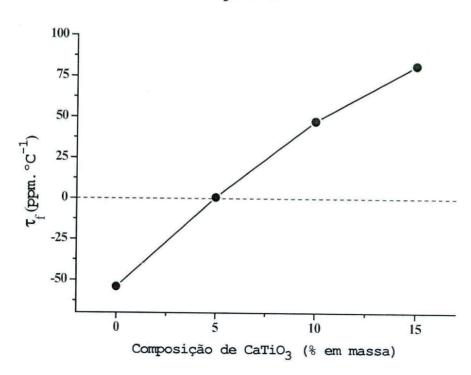
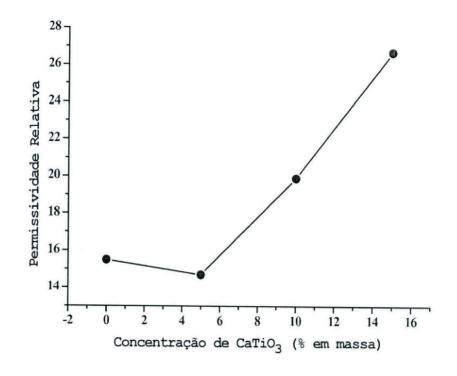




Figura 4

